A Julia-Wolff-Carathéodory theorem for infinitesimal generators in the unit ball
نویسندگان
چکیده
منابع مشابه
A noncommutative version of the Julia-Wolff-Carathéodory theorem
The classical Julia–Wolff–Carathéodory theorem characterizes the behaviour of the derivative of an analytic self-map of a unit disk or of a half-plane of the complex plane at certain boundary points. We prove a version of this result that applies to noncommutative self-maps of noncommutative half-planes in von Neumann algebras at points of the distinguished boundary of the domain. Our result, s...
متن کامل1 99 6 The Julia - Wolff - Carathéodory theorem in polydisks by Marco Abate
The classical Julia-Wolff-Carathéodory theorem gives a condition ensuring the existence of the non-tangential limit of both a bounded holomorphic function and its derivative at a given boundary point of the unit disk in the complex plane. This theorem has been generalized by Rudin to holomorphic maps between unit balls in C, and by the author to holomorphic maps between strongly (pseudo)convex ...
متن کاملAn Improved Julia-caratheodory Theorem for Schur-agler Mappings of the Unit Ball
We adapt Sarason’s proof of the Julia-Caratheodory theorem to the class of Schur-Agler mappings of the unit ball, obtaining a strengthened form of this theorem. In particular those quantities which appear in the classical theorem and depend only on the component of the mapping in the complex normal direction have K-limits (not just restricted K-limits) at the boundary. Let B denote the open uni...
متن کاملBusemann Functions and Julia-wolff-carathéodory Theorem for Polydiscs
The classical Julia-Wolff-Carathéodory Theorem is one of the main tools to study the boundary behavior of holomorphic self-maps of the unit disc of C. In this paper we prove a Julia-Wolff-Carathéodory’s type theorem in the case of the polydisc of Cn. The Busemann functions are used to define a class of “generalized horospheres” for the polydisc and to extend the notion of non-tangential limit. ...
متن کاملA Julia–Carathéodory theorem for hyperbolically monotone mappings in the Hilbert ball
We establish a Julia–Carathéodory theorem and a boundary Schwarz– Wolff lemma for hyperbolically monotone mappings in the open unit ball of a complex Hilbert space. Let B be the open unit ball of a complex Hilbert space H with inner product 〈·, ·〉 and norm ‖ · ‖, and let ρ : B ×B 7→ R be the hyperbolic metric on B ([8], p. 98), i.e., ρ(x, y) = tanh √ 1− σ(x, y), (1) where σ(x, y) = (1 − ‖x‖)(1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2015
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/6535